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● Generalization of the spectral decomposition that applies to all matrices, rather than 
just normal matrices.

● Applications:
○ Compute the size of a matrix (in a way that typically makes more sense than 

norm)
○ Provide a new geometric interpretation of linear transformations
○ Solve optimization problems
○ Construct an “almost inverse” for matrices that do not have an inverse.

SVD Introduction
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● Given any mn matrix A, algorithm to find matrices U, V, and ∑ such that (always 
exists)

● 𝐴 = 𝑈Σ𝑉𝑇 𝐴 = 𝑈Σ𝑉∗

𝑼 is mm and orthogonal (always real)
∑ is mn and diagonal with non-negative (always real) called singular     values.  
𝑽 is nn and orthogonal (always real)

● Columns of U are eigenvectors of 𝐴𝐴𝑇 (called the left singular 
vectors).

● Columns of V are eigenvectors of 𝐴𝑇𝐴 (called the right singular 
vectors).

● The non-zero singular vectors are the positive square roots of 
non-zero eigenvalues of 𝐴𝐴𝑇or 𝐴𝑇𝐴.

SVD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● The ∑𝑖 are called the singular values of A
● If A is singular, some of the ∑𝑖 will be 0
● In general rank(A) = number of nonzero ∑𝑖
● SVD is mostly unique (up to permutation of singular values, or if some ∑𝑖 are equal)

SVD
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● Assume 𝐴 with singular value decomposition 𝐴 = 𝑈Σ𝑉𝑇. Let’s take a look at the 
eigenpairs corresponding to 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑈Σ𝑉𝑇 𝑇 𝑈Σ𝑉𝑇

𝑉𝑇 𝑇 Σ 𝑇𝑈𝑇 𝑈Σ𝑉𝑇 = 𝑉Σ𝑇𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ𝑇Σ𝑉𝑇

Hence 𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

● Recall that columns of 𝑉 are all linear independent (orthogonal 
matrix), then from diagonalization (𝐵 = 𝑋𝐷𝑋−1), we get:
○ The columns of 𝑉 are the eigenvectors of the matrix 𝐴𝑇𝐴
○ The diagonal entries of Σ2 are the eigenvalues of 𝐴𝑇𝐴

● Let’s call 𝜆 the eigenvalues of 𝐴𝑇𝐴, then 𝜎𝑖
2 = 𝜆𝑖

Columns of V are eigenvectors of 𝐴𝑇𝐴

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● In a similar way,
𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇 𝑈Σ𝑉𝑇 𝑇

𝑈Σ𝑉𝑇 𝑉𝑇 𝑇 Σ 𝑇𝑈𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇

Hence 𝐴𝐴𝑇 = 𝑈Σ2𝑈𝑇

● Recall that columns of 𝑈 are all linear independent (orthogonal 
matrix), then from diagonalization (𝐵 = 𝑋𝐷𝑋−1), we get:
○ The columns of 𝑈 are the eigenvectors of the matrix 𝐴𝐴𝑇

Columns of U are eigenvectors of 𝐴𝐴𝑇

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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1. Evaluate the n eigenvectors 𝑣𝑖 and eigenvalues 𝜆𝑖 of 𝐴𝑇𝐴
2. Make a matrix 𝑉 from the normalized vectors 𝑣𝑖 . The columns are called “right singular 

vectors”.

V =
⋮ ⋯ ⋮
𝑣1 ⋯ 𝑣𝑛
⋮ ⋯ ⋮

3. Make a diagonal matrix from the square roots of the eigenvalues.

Σ =

𝜎1
⋱

𝜎𝑛
𝜎𝑖= 𝜆𝑖 and 𝜎1 ≥ 𝜎2 ≥ ⋯

4. Find 𝑈: 𝐴 = 𝑈Σ𝑉𝑇 ⇒ 𝑈Σ = 𝐴𝑉 ⇒ 𝑈 = 𝐴𝑉Σ−1. The columns are called “left singular 
values”.

How can we compute an SVD of a matrix A?

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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How can we compute an SVD of a 
matrix A?

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

𝑆 =
1 −1
−2 2
2 −2

→ 𝑆𝑇𝑆 =
9 −9
−9 9

, 𝑟𝑎𝑛𝑘 𝑆 = 1

Δ 𝜆 = 𝜆2 − 18𝜆 = 0 ⇒ 𝜎1 = 18, 𝜎2 = 0 ⇒ 𝜮 =
𝟑 𝟐 𝟎
𝟎 𝟎
𝟎 𝟎

𝑣1 =
1/ 2

−1/ 2
, 𝑣2 =

1/ 2

1/ 2
⇒ 𝑽 =

𝟏

𝟐

𝟏 𝟏
−𝟏 𝟏

𝑆𝑣1 =

2/ 2

−4/ 2

4/ 2

⇒ 𝑢1 =
1

𝜎1
𝑆𝑣1 =

1

3 2

2/ 2

−4/ 2

4/ 2

=

1/3
−2/3
2/3

𝑢2 =

2/3
2/3
1/3

, 𝑢3 =

−2/3
1/3
2/3

⇒ 𝑼 =
𝟏

𝟑

𝟏 𝟐 −𝟐
−𝟐 𝟐 𝟏
𝟐 𝟏 𝟐

𝑆 =
1 −1
−2 2
2 −2

=
1

3

1 2 −2
−2 2 1
2 1 2

3 2 0
0 0
0 0

1

2

1 1
−1 1

= 𝑈Σ𝑉𝑇
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● The SVD is a factorization of a m x n matrix into 
𝐴 = 𝑈Σ𝑉𝑇

Where U is a m x m orthogonal matrix, 𝑉𝑇 is a n x n orthogonal matrix 
and Σ is a m x n diagonal matrix.
For a square matrix (m=n): 

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

𝜎1
⋱

𝜎𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

𝜎1
⋱

𝜎𝑛

⋮ ⋯ ⋮
𝑣1 ⋯ 𝑣𝑛
⋮ ⋯ ⋮

𝑇

SVD for Square Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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𝑆𝑣1 … 𝑆𝑣𝑟 0 … 0 𝑚×𝑛 = 𝜎1𝑢1 … 𝜎𝑟𝑢𝑟 0 … 0 𝑚×𝑛

𝑆𝑣1 … 𝑆𝑣𝑟 𝑆𝑣𝑟+1 … 𝑆𝑣𝑛 𝑚×𝑛 = 𝜎1𝑢1 … 𝜎𝑟𝑢𝑟 0 … 0 𝑚×𝑛

𝑆 𝑣1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑚

𝜎1 ⋯ 0
⋮ ⋮
0 ⋯ 𝜎𝑟

0

0 0
𝑆𝑚×𝑛𝑉𝑛×𝑛 = 𝑈𝑚×𝑚Σ𝑚×𝑛

𝑆 = 𝑈Σ𝑉𝑇

Reduced SVD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● what happens when A is not a square matrix?
● n > m

𝐴 = 𝑈Σ𝑉𝑇 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑚
⋮ ⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑚

0
⋱

0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑚

𝑇 ⋯
⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

We can instead rewrite the above as:
𝐴 = 𝑈Σ𝑅𝑉𝑅

𝑇

where 𝑉𝑅 is n x m matrix and Σ𝑅 is a m x m matrix
In general:

𝐴 = 𝑈𝑅Σ𝑅𝑉𝑅
𝑇

Reduced SVD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

𝑈𝑅 is a m x k matrix

Σ𝑅 is a k x k matrix            k = min(m, n)    
𝑉𝑅 is a n x k matrix

Now U and V are not 
orthogonal. But their columns 
are orthonormal. 
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● m > n

𝐴 = 𝑈Σ𝑉𝑇 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ ⋮
⋯ 𝑢𝑚
⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

We can instead rewrite the above as:
𝐴 = 𝑈Σ𝑅𝑉𝑅

𝑇

where 𝑈𝑅 is m x n matrix and Σ𝑅 is a n x n matrix

Reduced SVD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Now U and V are not 
orthogonal. But their columns 
are orthonormal. 
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● Let’s take a look at the product of Σ𝑇Σ where Σ has the singular values of a 𝐴, a m x n matrix.

○ m > n:

Σ𝑇Σ =

𝜎1
⋱

𝜎𝑛

0
⋱

0 𝑛×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

=
𝜎1
2

⋱
𝜎𝑛
2

𝑛×𝑛

○ n > m:

Σ𝑇Σ =

𝜎1
⋱

𝜎𝑚
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑛×𝑚

𝜎1
⋱

𝜎𝑚

0
⋱

0 𝑚×𝑛

=

𝜎1
2

⋱
𝜎𝑚
2

0
⋱

0
0

⋱
0

0
⋱

0 𝑛×𝑛

Reduced SVD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Wide Matrix

Reduced SVD
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● Tall Matrix 

Reduced SVD
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SVD Comparison
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SVD Diagonalization Spectral 
Decomposition

applies to every single 
matrix (even rectangular 

ones).

only applies to matrices 
with a basis of 
eigenvectors

only applies to normal 
matrices

matrix ∑ in the middle of 
the SVD is diagonal (and 

even has real non-
negative entries)

do not guarantee an 
entrywise non-negative 

matrix

do not guarantee an 
entrywise non-negative 

matrix

It requires two unitary 
matrices U and V

only required one 
invertible

matrix

only required one unitary 
matrix
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● Unitary Freedom of PSD Decompositions
Suppose 𝐵, 𝐶 ∈ ℳ𝑚,𝑛 𝔽 . The following are equivalent:

a. There exists a unitary matrix 𝑈 ∈ ℳ𝑚 𝔽 such that 𝐶 = 𝑈𝐵,

b. 𝐵∗𝐵 = 𝐶∗𝐶,

c. 𝐵𝐯 . 𝐵𝐰 = C𝐯 . C𝐰 for all 𝐯,𝐰 ∈ 𝔽𝑛, and 

d. 𝐵𝐯 = C𝐯 for all 𝐯 ∈ 𝔽𝑛.

Lemma

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

3 2
−2 0

1 2 3
−1 0 1
3 2 1
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● If 𝑚 ≠ 𝑛 then 𝐴∗𝐴, 𝐴𝐴∗ have different sizes, but they still have essentially the same 
eigenvalues—whichever one is larger just has some extra 0 eigenvalues.

● The same is actually true of AB and BA for any A and B.

● Proof SVD in another view!!

SVD Proof

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



SVD Intuition

03



23

Review 

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



24CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
24

The product of a matrix’s 
singular values equals the 

absolute value of its 
determinant

𝑨 = 𝑼𝜮𝑽∗
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𝐴 = 𝑈Σ𝑉∗

𝐴∗ = 𝑉Σ∗𝑈∗

𝐴−1 = 𝑉Σ−1𝑈∗

A Geometric Interpretation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Suppose 𝐴 is a m x n rectangular matrix where m > n:

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ ⋮
⋯ 𝑢𝑚
⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ 𝜎1𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝜎𝑛𝑣𝑛

𝑇 ⋯
= 𝜎1𝑢1𝑣1

𝑇 + 𝜎2𝑢2𝑣2
𝑇+ … + 𝜎𝑛𝑢𝑛𝑣𝑛𝑇

𝐴 =෍

𝑖=1

𝑛

𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝐴1 = 𝜎1𝑢1𝑣1
𝑇 what is rank(𝐴1) = ?

In general, rank(𝐴𝑘) = 𝑘

Determining the rank of a matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Suppose 𝔽 = ℝ or 𝔽 = ℂ, and 𝐴 ∈ ℳ𝑚,𝑛(𝔽) has rank(𝐴) = 𝑟. There 

exist orthonormal sets of vectors 𝑢𝑗 𝑗=1

𝑟
⊂ 𝔽𝑚 and 𝑣𝑗 𝑗=1

𝑟
⊂ 𝔽𝑛

such that

𝐴 =෍

𝑖=1

𝑟

𝜎𝑖𝑢𝑖𝑣𝑖
∗,

where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 are the non-zero singular values of A.

SVD and Rank

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Let 𝐴 ∈ ℳ𝑚,𝑛 be a matrix with rank(A) = r and the singular value 
decomposition 𝐴 = 𝑈Σ𝑉𝑇 , where

𝑈 = 𝑢1 𝑢2 … | 𝑢𝑚 and V= 𝑣1 𝑣2 … | 𝑣𝑛
Then

a. {𝑢1, 𝑢2, … , 𝑢𝑟} is an orthonormal basis of range(𝐴),
b. 𝑢𝑟+1, 𝑢𝑟+2, … , 𝑢𝑚 is an orthonormal basis of null(𝐴∗),
c. 𝑣1, 𝑣2, … , 𝑣𝑟 is an orthonormal basis of range(𝐴∗), and
d. 𝑣𝑟+1, 𝑣𝑟+2, … , 𝑣𝑛 is an orthonormal basis of null(𝐴)

Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Suppose you want to find best rank-k approximation to A
○ Answer: set all but the largest k singular values to zero

● Can form compact representation by eliminating columns of U and V corresponding 
to zeroed Σi

SVD and Matrix Similarity

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● If 𝐴 ∈ ℳ𝑛 is positive semidefinite then its singular values equals its 
eigenvalues.

SVD and PSD

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Why is SVD so useful?
● 𝐴−1 = 𝑉Σ−1𝑈−1 = 𝑉Σ−1𝑈𝑇

○ Using fact that inverse = transpose for orthogonal matrices

○ Since Σ is diagonal, Σ−1 also diagonal with reciprocals of entries of Σ

● This fails when some Σ𝑖 are 0

○ It’s supposed to fail – singular matrix

● Pseudoinverse: if Σ𝑖 = 0, set 1
Σ𝑖

to 0 (!)

○ “Closest” matrix to inverse
○ Defined for all (even non-square, singular, etc.) matrices
○ Equal to 𝐴𝑇𝐴 −1𝐴𝑇 if 𝐴𝑇𝐴 invertible

SVD and Inverses

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● Problem:
if A is rank-deficient, Σ is not invertible.

● How to fix it:
Define the Pseudo Inverse

● Pseudo Inverse of a diagonal matrix:

Σ+ 𝑖 = ൞

1

𝜎𝑖
, 𝑖𝑓 𝜎𝑖 ≠ 0

0, 𝑖𝑓𝜎𝑖 = 0

● Pseudo Inverse of a matrix A:
𝐴+ = 𝑉Σ+𝑈𝑇

Pseudo Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● If a matrix A has the singular value decomposition
𝐴 = 𝑈𝑊𝑉𝑇

then the pseudo-inverse or Moore-Penrose inverse of A is
𝐴+ = 𝑉𝑊−1𝑈𝑇

Moore-Penrose inverse (Pseudo Inverse)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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𝐴+ = 𝑉𝑊−1𝑈𝑇

If A is ‘tall’ (m > n) and has full rank

𝐴+ = 𝐴𝑇𝐴 −1𝐴𝑇 (it gives the least-squares solution 𝑥𝑙𝑠𝑞 = 𝐴+𝑏)
If A is ‘short’ (n > m) and has full rank
𝐴+ = 𝐴𝑇 𝐴𝐴𝑇 −1 (it gives the least-norm solution 𝑥𝑙−𝑛 = 𝐴+𝑏)

○ In general, 𝑥𝑝𝑖𝑛𝑣 = 𝐴+𝑏 is the minimum-norm, least-square solution.

Pseudo Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● .

● Invert the diagonal entries in D that are nonzero, but leave the other diagonal entries 
alone as zeros.

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Moore-Penrose pseudoinverse
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