

Singular Value Decomposition

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

01

02

03

Introduction

Reduced SVD

SVD Intuition

04 SVD in Problem Solving

05

06

Applications

Pseudo Inverse

01

SVD Introduction

SVD Introduction

- Generalization of the spectral decomposition that applies to all matrices, rather than just normal matrices.
- Applications:
 - Compute the size of a matrix (in a way that typically makes more sense than norm)
 - Provide a new geometric interpretation of linear transformations
 - Solve optimization problems
 - Construct an "almost inverse" for matrices that do not have an inverse.

0

SVD

- Given any m×n matrix A, algorithm to find matrices U, V, and ∑ such that (always exists)
- $A = U\Sigma V^T A = U\Sigma V^*$ U is $m\times m$ and orthogonal (always real) \sum is $m\times n$ and diagonal with non-negative (always real) called <u>singular</u> values V is $n\times n$ and orthogonal (always real)
- Columns of U are eigenvectors of AA^T (called the left singular vectors).
- Columns of V are eigenvectors of A^TA (called the right singular vectors).
- The non-zero singular vectors are the positive square roots of non-zero eigenvalues of AA^{T} or $A^{T}A$.

SVD

- The Σ_i are called the singular values of **A**
- If **A** is singular, some of the Σ_i will be 0
- In general $rank(\mathbf{A})$ = number of nonzero Σ_i
- SVD is mostly unique (up to permutation of singular values, or if some Σ_i are equal)

 \mathcal{C}

Columns of V are eigenvectors of A^TA

• Assume A with singular value decomposition $A = U\Sigma V^T$. Let's take a look at the eigenpairs corresponding to A^TA :

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$(V^{T})^{T}(\Sigma)^{T}U^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T}$$

Hence $A^T A = V \Sigma^2 V^T$

- Recall that columns of V are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:
 - \circ The columns of V are the eigenvectors of the matrix A^TA
 - The diagonal entries of Σ^2 are the eigenvalues of A^TA
- Let's call λ the eigenvalues of A^TA , then $\sigma_i^2 = \lambda_i$

Columns of U are eigenvectors of AA^T

In a similar way,

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T}$$
$$(U\Sigma V^{T})(V^{T})^{T}(\Sigma)^{T}U^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma \Sigma^{T}U^{T}$$

Hence $AA^T = U\Sigma^2U^T$

- Recall that columns of U are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:
 - \circ The columns of *U* are the eigenvectors of the matrix AA^T

 \cup

How can we compute an SVD of a matrix A?

- 1. Evaluate the n eigenvectors v_i and eigenvalues λ_i of A^TA
- 2. Make a matrix V from the normalized vectors v_i . The columns are called "<u>right singular</u> vectors".

$$V = \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and } \sigma_1 \ge \sigma_2 \ge \cdots$$

4. Find $U: A = U\Sigma V^T \Rightarrow U\Sigma = AV \Rightarrow U = AV\Sigma^{-1}$. The columns are called "<u>left singular</u> values".

Example

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} \rightarrow S^{T}S = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}, rank(S) = 1$$

$$\Delta(\lambda) = \lambda^{2} - 18\lambda = 0 \Rightarrow \sigma_{1} = \sqrt{18}, \sigma_{2} = 0 \Rightarrow \Sigma = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$v_{1} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, v_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \Rightarrow V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$Sv_{1} = \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} \Rightarrow u_{1} = \frac{1}{\sigma_{1}} Sv_{1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

$$u_{2} = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, u_{3} = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \Rightarrow U = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & 1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = U\Sigma V^{T}$$

02

Reduced SVD

SVD for Square Matrix

• The SVD is a factorization of a m x n matrix into

$$A = U\Sigma V^T$$

Where U is a m x m orthogonal matrix, V^T is a n x n orthogonal matrix and Σ is a m x n diagonal matrix.

For a square matrix (m=n):

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}$$

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}^T$$

 \bigcirc

$$[Sv_1 \quad \dots \quad Sv_r \quad 0 \quad \dots \quad 0]_{m \times n} = [\sigma_1 u_1 \quad \dots \quad \sigma_r u_r \quad 0 \quad \dots \quad 0]_{m \times n}$$

$$[Sv_1 \quad \dots \quad Sv_r \quad Sv_{r+1} \quad \dots \quad Sv_n]_{m \times n} = [\sigma_1 u_1 \quad \dots \quad \sigma_r u_r \quad 0 \quad \dots \quad 0]_{m \times n}$$

$$S[v_1 \quad \dots \quad v_n] = \begin{bmatrix} u_1 & \dots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & & \vdots & 0 \\ 0 & \dots & \sigma_r & 0 \end{bmatrix}$$

 $S_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$

$$\begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & & \vdots & 0 \\ 0 & \cdots & \sigma_r & 0 \end{bmatrix}$$

$$S = U\Sigma V^T$$

- what happens when A is not a square matrix?
- n > m

$$A = U\Sigma V^T = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_m \\ \vdots & \cdots & \vdots \end{pmatrix}_{m \times m} \begin{pmatrix} \sigma_1 & & & 0 \\ & \ddots & & & \ddots \\ & & \sigma_m & & & 0 \end{pmatrix}_{m \times n} \begin{pmatrix} \cdots & v_1 & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_m^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}_{n \times n}$$

We can instead rewrite the above as:

$$A = U\Sigma_R V_R^T$$

where V_R is n x m matrix and Σ_R is a m x m matrix In general:

$$A = U_R \Sigma_R V_R^T$$

Now U and V are not orthogonal. But their columns are orthonormal.

 U_R is a m x k matrix Σ_R is a k x k matrix V_R is a n x k matrix

k = min(m, n)

 \bullet m > n

$$A = U\Sigma V^T = \begin{pmatrix} \vdots & \cdots & \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n & \cdots & u_m \\ \vdots & \cdots & \vdots & \cdots & \vdots \end{pmatrix}_{m\times m} \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ 0 & \cdots & 0 & \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{m\times n} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}_{n\times n}$$

We can instead rewrite the above as:

$$A = U\Sigma_R V_R^T$$

where U_R is m x n matrix and Σ_R is a n x n matrix

Now U and V are not orthogonal. But their columns are orthonormal.

 \supset

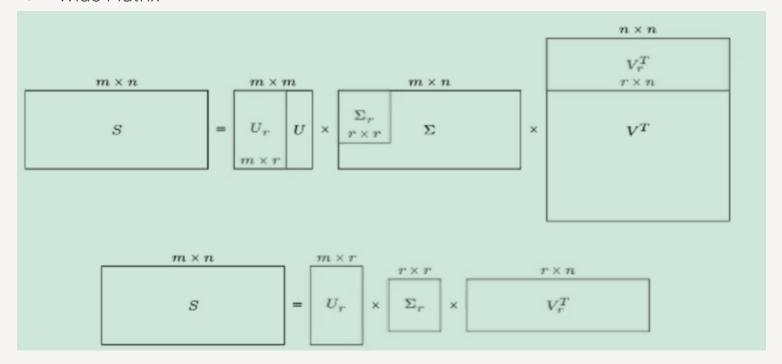
- Let's take a look at the product of $\Sigma^T \Sigma$ where Σ has the singular values of a A, a m x n matrix.
 - o m > n:

$$\Sigma^{T}\Sigma = \begin{pmatrix} \sigma_{1} & & & & & & \\ & \ddots & & & & & \\ & & \sigma_{n} & & & & 0 \end{pmatrix}_{n \times m} \begin{pmatrix} \sigma_{1} & & & & & \\ & \ddots & & & & \\ & & \sigma_{n} & & & 0 \\ \vdots & \ddots & \vdots & & & \\ 0 & \cdots & 0 & & & 0 \end{pmatrix} = \begin{pmatrix} \sigma_{1}^{2} & & & & \\ & \ddots & & & \\ & & \sigma_{n}^{2} \end{pmatrix}_{n \times n}$$

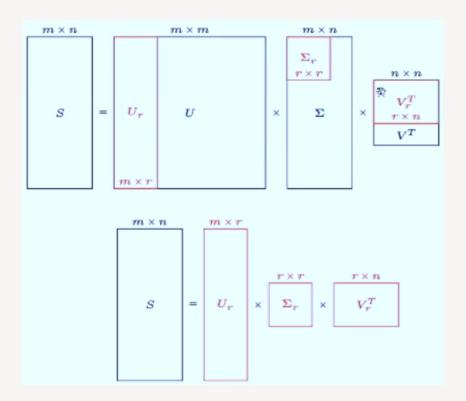
o n > m:

$$\Sigma^T \Sigma = \begin{pmatrix} \sigma_1 & & & & & \\ & \ddots & & \\ & & \sigma_m \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{n \times m} \begin{pmatrix} \sigma_1 & & & & & \\ & \ddots & & & & \\ & & \sigma_m & & & \\ & & & \sigma_m \end{pmatrix}_{m \times n} = \begin{pmatrix} \sigma_1^2 & & & 0 & & \\ & \ddots & & & \ddots & \\ & & \sigma_m^2 & & & 0 \\ & \ddots & & & \ddots & \\ & & 0 & & & 0 \end{pmatrix}_{n \times n}$$

Wide Matrix



Tall Matrix



 \bigcirc

SVD Comparison

SVD	Diagonalization	Spectral Decomposition
applies to every single matrix (even rectangular ones).	only applies to matrices with a basis of eigenvectors	only applies to normal matrices
matrix ∑ in the middle of the SVD is diagonal (and even has real non- negative entries)	do not guarantee an entrywise non-negative matrix	do not guarantee an entrywise non-negative matrix
It requires two unitary matrices U and V	only required one invertible matrix	only required one unitary matrix

Lemma

- Unitary Freedom of PSD Decompositions Suppose $B, C \in \mathcal{M}_{m,n}(\mathbb{F})$. The following are equivalent:
 - a. There exists a unitary matrix $U \in \mathcal{M}_m(\mathbb{F})$ such that C = UB,
 - b. $B^*B = C^*C$,

Example

$$\begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

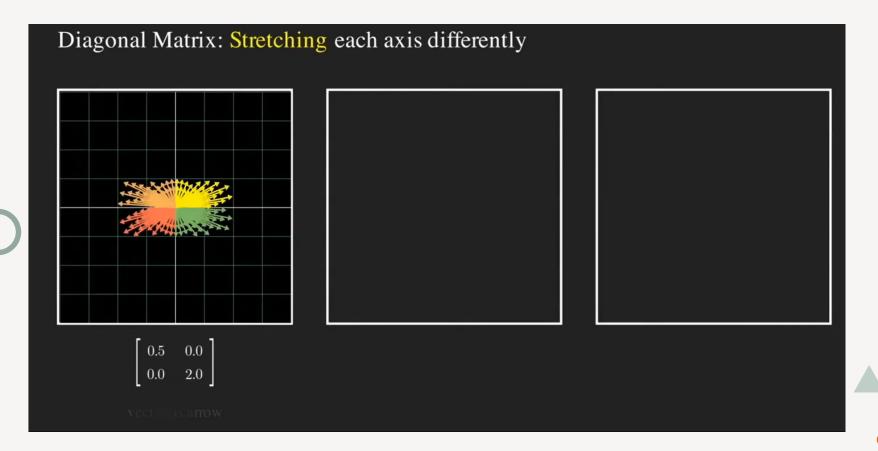
SVD Proof

- If $m \neq n$ then A^*A , AA^* have different sizes, but they still have essentially the same eigenvalues—whichever one is larger just has some extra 0 eigenvalues.
- The same is actually true of AB and BA for any A and B.
- Proof SVD in another view!!

 \mathcal{C}

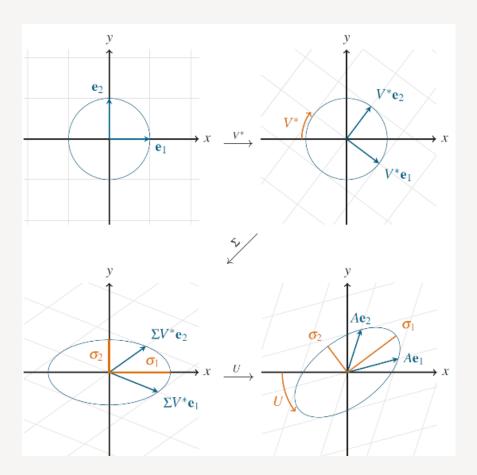
03

SVD Intuition



$A = U\Sigma V^*$

The product of a matrix's singular values equals the absolute value of its determinant

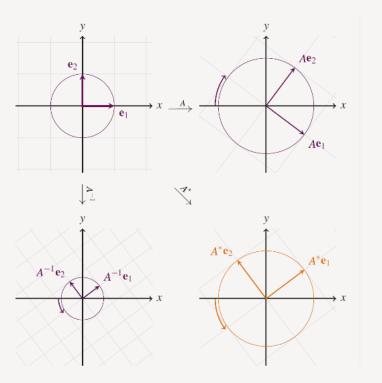


A Geometric Interpretation

$$A = U\Sigma V^*$$

$$A^* = V\Sigma^*U^*$$

$$A^{-1} = V \Sigma^{-1} U^*$$



04

SVD in Problem Solving

Determining the rank of a matrix

• Suppose A is a m x n rectangular matrix where m > n:

$$A = \begin{pmatrix} \vdots & \cdots & \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n & \cdots & u_m \\ \vdots & \cdots & \vdots & \cdots & \vdots \end{pmatrix}_{m \times m} \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ 0 & \cdots & 0 & & \\ \vdots & \ddots & \vdots & & \\ 0 & \cdots & 0 & & \\ & & & & & \\ \end{pmatrix}_{m \times n} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}_{n \times n}$$

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \cdots & \sigma_1 v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & \sigma_n v_n^T & \cdots \end{pmatrix} = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_n u_n v_n^T$$

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T$$

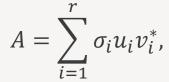
$$A_1 = \sigma_1 u_1 v_1^T \text{ what is } \operatorname{rank}(A_1) = ?$$

In general, $rank(A_k) = k$

 \circ

SVD and Rank

• Suppose $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, and $A\in\mathcal{M}_{m,n}(\mathbb{F})$ has $\mathrm{rank}(A)=r$. There exist orthonormal sets of vectors $\left\{u_j\right\}_{j=1}^r\subset\mathbb{F}^m$ and $\left\{v_j\right\}_{j=1}^r\subset\mathbb{F}^n$ such that



where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are the non-zero singular values of A.

0

Conclusion

• Let $A \in \mathcal{M}_{m,n}$ be a matrix with rank(A) = r and the singular value decomposition $A = U\Sigma V^T$, where

$$U = [u_1 \mid u_2 \mid \dots \mid u_m]$$
 and $V = [v_1 \mid v_2 \mid \dots \mid v_n]$

Then

- a. $\{u_1, u_2, ..., u_r\}$ is an orthonormal basis of range(A),
- b. $\{u_{r+1}, u_{r+2}, ..., u_m\}$ is an orthonormal basis of $\text{null}(A^*)$,
- c. $\{v_1, v_2, ..., v_r\}$ is an orthonormal basis of range (A^*) , and
- d. $\{v_{r+1}, v_{r+2}, ..., v_n\}$ is an orthonormal basis of null(A)

 C

SVD and Matrix Similarity

- Suppose you want to find best rank-k approximation to A
 - \circ Answer: set all but the largest k singular values to zero
- Can form compact representation by eliminating columns of ${\bf U}$ and ${\bf V}$ corresponding to zeroed Σ_i

 \mathcal{C}

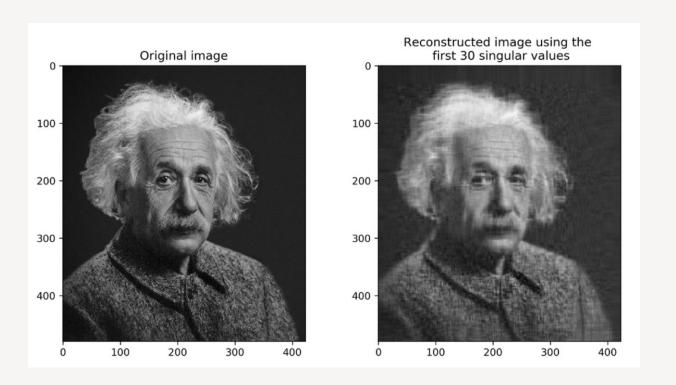
SVD and PSD

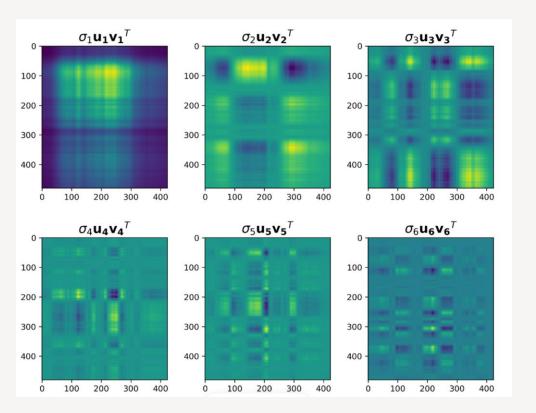
• If $A \in \mathcal{M}_n$ is positive semidefinite then its singular values equals its eigenvalues.

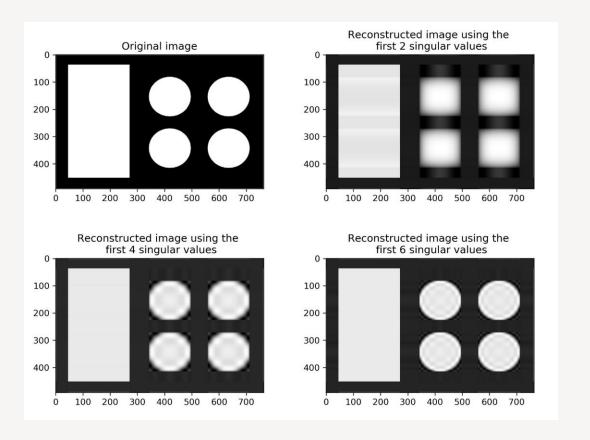
O

05

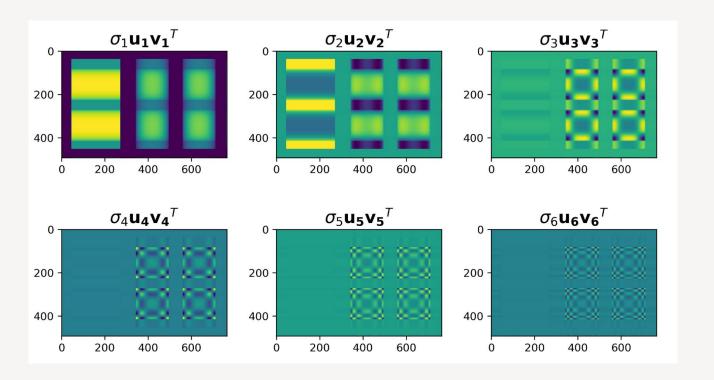
Applications

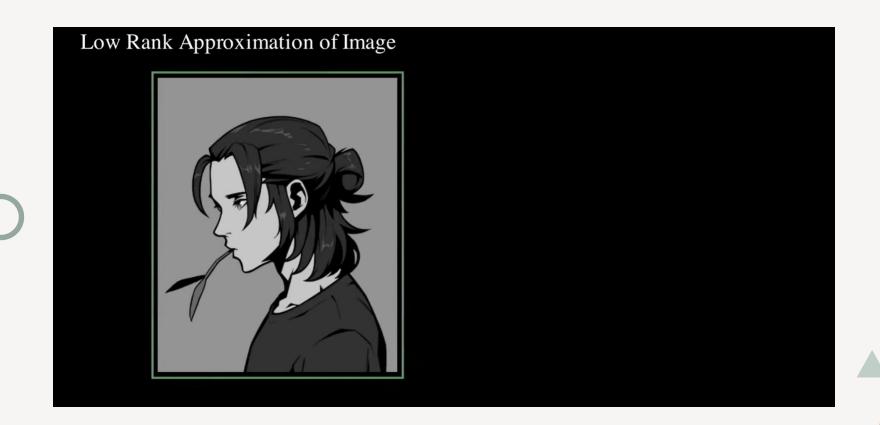






O





06

Pseudo Inverse

SVD and Inverses

- Why is SVD so useful?
- $A^{-1} = V\Sigma^{-1}U^{-1} = V\Sigma^{-1}U^{T}$
 - Using fact that inverse = transpose for orthogonal matrices
 - \circ Since Σ is diagonal, Σ^{-1} also diagonal with reciprocals of entries of Σ
- ullet This fails when some Σ_i are 0
 - o It's *supposed* to fail singular matrix
- Pseudoinverse: if $\Sigma_i=0$, set $\frac{1}{\Sigma_i}$ to 0 (!)
 - "Closest" matrix to inverse
 - o Defined for all (even non-square, singular, etc.) matrices
 - Equal to $(A^TA)^{-1}A^T$ if A^TA invertible

Pseudo Inverse

• Problem:

if A is rank-deficient, Σ is not invertible.

How to fix it:

Define the Pseudo Inverse

Pseudo Inverse of a diagonal matrix:

$$(\Sigma^{+})_{i} = \begin{cases} \frac{1}{\sigma_{i}}, & if \ \sigma_{i} \neq 0 \\ 0, & if \ \sigma_{i} = 0 \end{cases}$$

• Pseudo Inverse of a matrix A:

$$A^+ = V \Sigma^+ U^T$$

Moore-Penrose inverse (Pseudo Inverse)

• If a matrix A has the singular value decomposition

$$A = UWV^T$$

then the pseudo-inverse or Moore-Penrose inverse of A is

$$A^+ = VW^{-1}U^T$$

For a matrix A^+ to be the pseudoinverse of A, it must satisfy the following four **Moore-Penrose** conditions:

- 1. (MP1) $AA^{+}A = A$
- 2. (MP2) $A^+AA^+ = A^+$
- 3. (MP3) $(AA^+)^T = AA^+$
- 4. (MP4) $(A^+A)^T = A^+A$

These conditions ensure that A^+ behaves similarly to an inverse, even when A is not invertible.

Pseudo Inverse

$$A^+ = VW^{-1}U^T$$

If A is 'tall' (m > n) and has full rank

$$A^{+} = (A^{T}A)^{-1}A^{T}$$

 $A^+ = (A^T A)^{-1} A^T$ (it gives the least-squares solution $x_{lsq} = A^+ b$)

If A is 'short' (n > m) and has full rank

$$A^+ = A^T (AA^T)^{-1}$$

(it gives the least-norm solution $x_{l-n} = A^+b$)

In general, $x_{pinv} = A^+b$ is the minimum-norm, least-square solution.

$$x^* = A^{-1}b = (UDV^T)^{-1}b,$$

•
$$(UDV^T)^{-1} = V^{-T} D^{-1} U^{-1}$$

Moore-Penrose pseudoinverse $x^* = A^{-1}b = VD^{-1}U^Tb$

• Invert the diagonal entries in D that are nonzero, but leave the other diagonal entries alone as zeros.

